Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Eur J Pharm Sci ; 192: 106650, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995834

RESUMO

This study investigates the correlation between the structural and release properties of solid lipid microparticles (MPs) of tristearin containing 5 % w/w of four different liquid additives used as crystal modifiers: isopropyl myristate (IM), ethyl oleate (EO), oleic acid (OA) and medium chain triglycerides (MCT). All additives accelerated the conversion of the unstable α-form of tristearin, formed after the MPs manufacturing, to the stable ß-polymorph and the transformation was completed within 24 h (for IM and EO) or 48 h (for OA and MCT). The kinetic of polymorphic transition at 25 °C was investigated by simultaneous synchrotron SAXS/WAXS and DSC analysis after melting and subsequent cooling of the lipid mixture. After crystallization in the α-phase, additives accelerate the solid-solid phase transformation to ß-tristearin. SAXS data showed that two types of structural modifications occurred on MPs during storage: compaction of the crystal packing (slight decrease in lamellar thickness) and crystal growth (increased number of stacked lipid lamellae). The release behavior of a model hydrophilic drug (caffeine) at two different amounts (15 % and 30 %) from MPs was studied in water and biorelevant media simulated the gastric and intestinal environment. It was particularly significant that the introduction of IM, EO and MCT were able to prolong the drug release in water, passing from a diffusion-based Higuchi kinetics to a perfect zero-order kinetic. Moreover, the overall release profiles were higher in biorelevant media, where erosion/digestion of MPs was observed. After 6 months, a moderate but statistically significant change in release profile was observed for the MPs with IM and EO, which can be correlated with the time-dependent structural alterations (i.e. larger average crystallite size) of these formulations; while MPs with OA or MCT displayed stable release profiles. These findings help to understand the correlation between release behavior, polymorphism and supramolecular-level structural modification of lipid formulations containing crystal modifiers.


Assuntos
Água , Liberação Controlada de Fármacos , Espalhamento a Baixo Ângulo , Tamanho da Partícula , Difração de Raios X
2.
Eur J Pharm Biopharm ; 190: 171-183, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517450

RESUMO

The aim of this study is to investigate the potential of hybrid polymer-lipid microparticles with a biphasic structure (b-MPs) as drug delivery system. Hybrid b-MPs of Compritol®888 ATO as main lipid constituent of the shell and polyethylene glycol 400 as core material were produced by an innovative solvent-free approach based on spray congealing. To assess the suitability of hybrid b-MPs to encapsulate various types of APIs, three model drugs (fluconazole, tolbutamide and nimesulide) with extremely different water solubility were loaded into the polymeric core. The hybrid systems were characterized in terms of particle size, morphology and physical state. Various techniques (e.g. optical, Confocal Raman and Scanning Electron Microscopy) were used to investigate the influence of the drugs on different aspects of the b-MPs, including external and internal morphology, properties at the lipid/polymer interface and drug distribution. Hybrid b-MPs were suitable for the encapsulation of all drugs (encapsulation efficiency > 90 %) regardless the drug hydrophobic/hydrophilic properties. Finally, the drug release behaviors from hybrid b-MPs were studied and compared with traditional solid lipid MPs (consisting of only the lipid carrier). Due to the combination of lipid and polymeric materials, hybrid b-MPs showed a wide array of release profiles that depends on their composition, the type of loaded drug, the drug loading amount and location, providing a versatile platform and allowing the formulators to finely balance the release performance of drugs intended for oral administration. Overall, the study demonstrates that hybrid, solvent-free b-MPs produced by spray congealing are an extremely versatile delivery platform able to efficiently encapsulate and release very different types of drug compounds.


Assuntos
Lipídeos , Polímeros , Preparações Farmacêuticas , Solubilidade , Polímeros/química , Composição de Medicamentos/métodos , Tamanho da Partícula , Lipídeos/química , Água
3.
Int J Pharm ; 634: 122696, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36758882

RESUMO

Recently, Natural Deep Eutectic Solvents (NaDES) have emerged as potential solvents for boosting drug bioavailability. In this work, the mechanism of solubility enhancement of some APIs belonging to BCS class II (tolbutamide, nimesulide, domperidone and cinnarizine) in these eutectic bio-solvents was investigated in order to get deeper insights into the molecular interactions between the NaDES components and the selected drugs. Different NaDES formulations based on choline chloride, proline, solid organic acids (citric, tartaric and malic acid), sugars (glucose and xylitol) and water were prepared by mild heating (70 °C). Characterization of unloaded NaDES (pH, Karl Fisher titration, viscosity and FTIR analysis) indicated that the type of Hydrogen Bond Acceptor (HBA) and Hydrogen Bond Donor (HBD), their molar ratio as well as water amount strongly affect the extent of H-bonding interactions. Hard gelatin capsules filled with NaDES maintained their integrity until 6 months, proving that all water molecules participate in H-bond network. APIs' solubility enhancement was significant in all NaDES with respect to buffer solutions (pH 1.2 and 6.8). Analysing NaDES having Choline as HBA, it was found that the solubility of smaller molecules increased using larger HBD, while higher molecular weight APIs can be better inserted into the network formed by smaller HBD. NOE experiments demonstrated the formation of a robust supramolecular structure among the protons of choline, those of organic acid and water. In addition, 1D ROESY spectra revealed for the first time the crucial role of choline (methyl groups) in establishing hydrophobic interactions with the relative aliphatic or aromatic portion of the drugs. These data suggest the complex structure of the API-NaDES supramolecular assembly and underline that drug solubility is dependent on a balance network of H-bonds and hydrophobic interactions as well. Understanding the type of interactions between the API and NaDES is essential for their use as effective solubilisation aid.


Assuntos
Solventes Eutéticos Profundos , Água , Solubilidade , Solventes/química , Água/química , Colina/química
4.
Int J Pharm ; 632: 122576, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36596317

RESUMO

Hydrophilic semicrystalline carriers represent an alternative to amorphous polymers due to their low melting temperature, useful for the production of solid dispersions (SDs) by melting-based technologies. This research aims to compare SDs of ketoprofen (KET) and three different semicrystalline carriers (PEG, Poloxamer and Gelucire) regarding miscibility, phase behavior, molecular interactions and stability. KET was chosen owing to its low solubility and high glass forming ability. Estimation of drug-excipient miscibility was performed by Flory-Huggins theory. Negative Gibbs free energy indicated a spontaneous mixing of KET with the three carriers and miscibility in the order PEG > Poloxamer > Gelucire. SDs up to 40 % w/w of drug were produced by melting process at a temperature below KET melting point. Characterization of SDs was performed by differential scanning calorimetry, polarized light microscopy and powder X-ray diffraction. In case of PEG and Poloxamer, the drug incorporation did not affect carrier crystallinity, while KET was in the amorphous state. Differently, KET retarded the crystallization of Gelucire and at high drug loadings the SDs were amorphous and semisolid. FT-IR analysis revealed a strong interaction between KET and the three carriers. Finally, PEG-based SDs above 20 % KET loading displayed drug crystallization after 6 months of storage; while Poloxamer and Gelucire-based SDs showed KET crystallization only at 40 % KET. Due to its less hydrophilic character and limited water uptake, Gelucire showed the best stability among the three excipients.


Assuntos
Cetoprofeno , Polietilenoglicóis , Polietilenoglicóis/química , Poloxâmero/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros/química , Excipientes , Solubilidade , Varredura Diferencial de Calorimetria , Difração de Raios X
5.
Nanomaterials (Basel) ; 12(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36234575

RESUMO

The development of green, low cost and sustainable synthetic routes to produce metal nanoparticles is of outmost importance, as these materials fulfill large scale applications in a number of different areas. Herein, snail slime extracted from Helix Aspersa snails was successfully employed both as bio-reducing agent of silver nitrate and as bio-stabilizer of the obtained nanoparticles. Several trials were carried out by varying temperature, the volume of snail slime and the silver nitrate concentration to find the best biogenic pathway to produce silver nanoparticles. The best results were obtained when the synthesis was performed at room temperature and neutral pH. UV-Visible Spectroscopy, SEM-TEM and FTIR were used for a detailed characterization of the nanoparticles. The obtained nanoparticles are spherical, with mean diameters measured from TEM images ranging from 15 to 30 nm and stable over time. The role of proteins and glycoproteins in the biogenic production of silver nanoparticles was elucidated. Infrared spectra clearly showed the presence of proteins all around the silver core. The macromolecular shell is also responsible of the effectiveness of the synthesized AgNPs to inhibit Gram positive and Gram negative bacterial growth.

6.
Drug Deliv Transl Res ; 12(8): 1843-1858, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34988827

RESUMO

In the last decades, Green Chemistry has been gaining widespread attention within the pharmaceutical field. It is thus very important to bring more sustainable approaches into the design and manufacture of effective oral drug delivery systems. This review focuses on spray congealing and mechanochemical activation, two technologies endorsing different principles of green chemistry, and at the same time, addressing some of the challenges related to the transformation of poorly water-soluble drugs in highly bioavailable solid dosage forms. We therefore present an overview of the basic principles, equipment, and application of these particle-engineering technologies, with specific attention to case studies carried out by the groups working in Italian Universities.


Assuntos
Sistemas de Liberação de Medicamentos , Tecnologia Farmacêutica , Preparações Farmacêuticas , Solubilidade
7.
Pharmaceutics ; 13(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34371779

RESUMO

Despite the growing interest in lipid-based formulations, their polymorphism is still a challenge in the pharmaceutical industry. Understanding and controlling the polymorphic behavior of lipids is a key element for achieving the quality and preventing stability issues. This study aims to evaluate the impact of different oral-approved liquid lipids (LL) on the polymorphism, phase transitions and structure of solid lipid-based formulations and explore their influence on drug release. The LL investigated were isopropyl myristate, ethyl oleate, oleic acid, medium chain trigycerides, vitamin E acetate, glyceryl monooleate, lecithin and sorbitane monooleate. Spray-congealing was selected as an example of a melting-based solvent-free manufacturing method to produce microparticles (MPs) of tristearin (Dynasan®118). During the production process, tristearin MPs crystallized in the metastable α-form. Stability studied evidenced a slow phase transition to the stable ß-polymorph overtime, with the presence of the α-form still detected after 60 days of storage at 25 °C. The addition of 10% w/w of LL promoted the transition of tristearin from the α-form to the stable ß-form with a kinetic varying from few minutes to days, depending on the specific LL. The combination of various techniques (DSC, X-ray diffraction analysis, Hot-stage polarized light microscopy, SEM) showed that the addition of LL significantly modified the crystal structure of tristearin-based formulations at different length scales. Both the polymorphic form and the LL addition had a strong influence on the release behavior of a model hydrophilic drug (caffeine). Overall, the addition of LL can be considered an interesting approach to control triglyceride crystallization in the ß-form. From the industrial viewpoint, this approach might be advantageous as any polymorphic change will be complete before storage, hence enabling the production of stable lipid formulations.

8.
Int J Pharm ; 598: 120408, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647415

RESUMO

Gelatin-based films enriched with snail slime are proposed as novel biodegradable and naturally bioadhesive patches for cutaneous drug delivery. Films (thickness range 163-248 µm) were stretchable and they adhered firmly onto the wetted skin, especially those with high amount (70% V/V) of snail slime extract. Fluconazole was selected as model drug and added to films containing the highest amount of snail slime. The presence of Fluconazole (4.53 ± 0.07% w/w) did not modify significantly the mechanical properties, the swelling degree and the bioadhesive performances of the films. Structural investigations demonstrated that the crystalline form III of the drug changed to the amorphous one, forming an amorphous solid dispersion. Moreover, snail slime prevented the drug recrystallization over time. In vitro permeation studies showed that film exhibited a cumulative drug concentration (over 60% in 24 h) similar to that of the control solution containing 20% w/V of ethanol. Fluconazole-loaded gelatin films proved to be effective towards clinical isolates of Candida spp. indicating that the drug maintained its remarkable antifungal activity once formulated into gelatin and snail slime-based films. In conclusion, snail slime, thanks to its peculiar composition, has proved to be responsible of optimal skin adhesion, film flexibility and of the formation of a supersaturating drug delivery system able to increase skin permeation.


Assuntos
Gelatina , Preparações Farmacêuticas , Administração Cutânea , Sistemas de Liberação de Medicamentos , Fluconazol
9.
Pharmaceutics ; 14(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35056953

RESUMO

Lipid-based biphasic microparticles are generally produced by long and complex techniques based on double emulsions. In this study, spray congealing was used as a solvent-free fabrication method with improved processability to transform water-in-oil non-aqueous emulsions into spherical solid lipid-based particles with a biphasic structure (b-MPs). Emulsions were prepared by melt emulsification using different compositions of lipids (Dynasan®118 and Compritol®888 ATO), surfactants (Cetylstearyl alcohol and Span®60) and hydrophilic carriers (PEGs, Gelucire®48/16 and Poloxamer 188). First, pseudo-ternary phase diagrams were constructed to identify the area corresponding to each emulsion type (coarse emulsion or microemulsion). The hydrophobicity of the lipid mostly affected the interfacial tension, and thus the microstructure of the emulsion. Emulsions were then processed by spray congealing and the obtained b-MPs were characterized in terms of thermal and chemical properties (by DSC and FT-IR), external and internal morphology (by SEM, CLSM and Raman mapping). Solid free-flowing spherical particles (main size range 200-355 µm) with different architectures were successfully produced: microemulsions led to the formation of particles with a homogeneous internal structure, while coarse emulsions generated "multicores-shell" particles consisting of variable size hydrophilic cores evenly distributed within the crystalline lipid phase. Depending on their composition and structure, b-MPs could achieve various release profiles, representing a more versatile system than microparticles based on a single lipid phase. The formulation and technological strategy proposed, provides a feasible and cost-effective way of fabricating b-MPs with tunable internal structure and release behavior.

10.
Int J Pharm ; 591: 119979, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068694

RESUMO

Several strategies have been explored to obtain effective econazole nitrate (ECN) concentrations at the site of application for a prolonged time. In this paper, different gelatin-based film formulations for vaginal application were investigated, containing ECN (10% w/w with respect to gelatin) as pure drug or as drug-solid dispersions (SD). For the production of SD, different polymers were evaluated: polyvinylpyrrolidone (PVP), Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) and Gelucire® 50/13 (mixture of mono-, di- and triglycerides of fatty acids, esters of PEG 1500 and free PEG). Gelucire®-SD showed the best solubility enhancement, increasing 9.2 times the ECN solubility in pH 4.5 solution respect to pure drug; DSC and XRD analysis confirmed the crystalline form of the drug. XRD results evidenced that all gelatin-based films, containing either the drug or the SD, underwent the topotactic transformation of ECN into crystalline econazole (EC), owing to a strong interaction between the drug and the gelatin. Films containing Gelucire®-based SD displayed lower brittleness and rigidity with respect to the other samples; moreover they demonstrated good structural integrity after 24 h of incubation in the acidic solution (swelling degree of about 350%). Then, Gelucire®-SD based films were compared with the corresponding formulations cross-linked by genipin (2% w/w). The addition of genipin did not interfere with the drug-gelatin interaction. Gelucire®-SD based films showed similar release profiles to neat gelatin films, enhancing the drug release in the first 5 h and controlling the EC release over time, avoiding the use of a crosslinking additive. Finally, gelatin films containing Gelucire® solid dispersion displayed good adhesiveness and anti-Candida activity. Overall, results support the potential use of this film formulation as noncytotoxic EC delivery system for the treatment of vaginal candidiasis.


Assuntos
Econazol , Gelatina , Parto Obstétrico , Feminino , Humanos , Polietilenoglicóis , Gravidez , Solubilidade
11.
Mol Pharm ; 17(9): 3609-3621, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786955

RESUMO

Protein inactivation either during the production process or along the gastrointestinal tract is the major problem associated with the development of oral delivery systems for biological drugs. This work presents an evaluation of the structural integrity and the biological activity of a model protein, catalase, after its encapsulation in glyceryl trimyristate-based solid lipid microparticles (SLMs) obtained by the spray congealing technology. Circular dichroism and fluorescence spectroscopies were used to assess the integrity of catalase released from SLMs. The results confirmed that no conformational change occurred during the production process and both the secondary and tertiary structures were retained. Catalase is highly sensitive to temperature and undergoes denaturation above 60 °C; nevertheless, spray congealing allowed the retention of most biological activity due to the loading of the drug at the solid state, markedly reducing the risk of denaturation. Catalase activity after exposure to simulated gastric conditions (considering both acidic pH and the presence of gastric digestive hydrolases) ranged from 35 to 95% depending on the carrier: increasing of both the fatty acid chain length and the degree of substitution of the glyceride enhanced residual enzyme activity. SLMs allowed the protein release in a simulated intestinal environment and were not cytotoxic against HT29 cells. In conclusion, the encapsulation of proteins into SLMs by spray congealing might be a promising strategy for the formulation of nontoxic and inexpensive oral biotherapeutic products.


Assuntos
Catalase/administração & dosagem , Catalase/química , Lipídeos/química , Estômago/efeitos dos fármacos , Administração Oral , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Portadores de Fármacos/química , Ácidos Graxos/química , Células HT29 , Humanos , Concentração de Íons de Hidrogênio , Microesferas , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos
12.
Pharmaceutics ; 12(6)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545643

RESUMO

Delivery of poorly water soluble active pharmaceutical ingredients (APIs) by semi-crystalline solid dispersions prepared by spray congealing in form of microparticles (MPs) is an emerging method to increase their oral bioavailability. In this study, solid dispersions based on hydrophilic Gelucires® (Gelucire® 50/13 and Gelucire® 48/16 in different ratio) of three BCS class II model compounds (carbamazepine, CBZ, tolbutamide, TBM, and cinnarizine, CIN) having different physicochemical properties (logP, pKa, Tm) were produced by spray congealing process. The obtained MPs were investigated in terms of morphology, particles size, drug content, solid state properties, drug-carrier interactions, solubility, and dissolution performances. The solid-state characterization showed that the properties of the incorporated drug had a profound influence on the structure of the obtained solid dispersion: CBZ recrystallized in a different polymorphic form, TBM crystallinity was significantly reduced as a result of specific interactions with the carrier, while smaller crystals were observed in case of CIN. The in vitro tests suggested that the drug solubility was mainly influenced by carrier composition, while the drug dissolution behavior was affected by the API solid state in the MPs after the spray congealing process. Among the tested APIs, TBM-Gelucire dispersions showed the highest enhancement in drug dissolution as a result of the reduced drug crystallinity.

13.
Skin Pharmacol Physiol ; 33(6): 323-330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33494089

RESUMO

BACKGROUND: With the increasing diffusion of tattooing, the photolability of tattoo inks has become a critical issue, as available data indicated that several tattoo colorants are unstable under sunlight, generating potentially toxic photodegradation products. Therefore, it is desirable to enhance the photostability of coloring agents contained in tattoo inks. AIMS: Lipid microparticles (LMs) highly loaded with Acid Red 87 (C.I. 45380), a colorant used in tattoo inks, were evaluated for their effect on the colorant photoinstability. In addition, the capacity of the LMs to retain the incorporated C.I. 45380 colorant after their intradermal administration in excised porcine skin was investigated. METHODS: LMs loaded with C.I. 45380 were prepared using glyceryl tristearate as the lipidic material and phosphatidylcholine as the surfactant. Non-encapsulated C.I. 45380 or the colorant-loaded LMs were irradiated with a solar simulator for photodecomposition studies or introduced in the excised porcine skin mounted in Franz diffusion cells for stability evaluation in the dermal tissue. RESULTS AND CONCLUSION: The colorant content of the microparticles was 17.7%, and their size ranged from 25 to 170 µm. The light-induced degradation of C.I. 45380 was significantly decreased by its incorporation in the LMs from 20.2 ± 5.8% to 1.9 ± 2.1%. Moreover, after intradermal injection of free or microencapsulated C.I. 45380 in the excised pig skin, the LMs reduced by 93.7% (from 24.6 to 1.5%) the quantity of the colorant diffused and hence lost in the Franz cell receptor fluid. Hence, the LM carrier efficiently retained the entrapped C.I. 45380 following incubation in the dermal region of the isolated porcine skin, which is in favor of a long-lasting tattoo. Based on these data, the incorporation of C.I. 45380 in the LMs could represent a potentially useful strategy to reduce the photodecomposition of the tattoo colorant and its harmful interactions with the skin tissue.


Assuntos
Amarelo de Eosina-(YS)/farmacocinética , Corantes Fluorescentes/farmacocinética , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Tatuagem/métodos , Triglicerídeos/química , Animais , Amarelo de Eosina-(YS)/administração & dosagem , Amarelo de Eosina-(YS)/química , Amarelo de Eosina-(YS)/efeitos da radiação , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Corantes Fluorescentes/efeitos da radiação , Lipídeos/química , Fotólise , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Absorção Cutânea/efeitos da radiação , Luz Solar/efeitos adversos , Suínos
14.
Int J Biol Macromol ; 143: 126-135, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31805330

RESUMO

Snail mucus is an attractive natural substance, which is increasingly used in cosmetic creams and syrups thanks to its emollient, moisturizing, protective and reparative properties. The aim of the present study was to explore the physicochemical properties of chitosan-based films added with snail mucus extracted from Helix Aspersa Muller. To this aim, chitosan films at different content of snail mucus were fabricated by simple solvent casting technique. The results of X-ray diffraction analyses, tensile mechanical tests, Infrared spectroscopy and thermogravimetry demonstrated that snail mucus addition strongly modifies the properties of chitosan films. In particular, it acted like a plasticizer enhancing films extensibility up to ten times and strongly improving their water barrier and bioadhesion properties, with a trend depending on Snail mucus content. Furthermore, it provides the films with antibacterial properties and enhanced cytocompatibility, yielding materials with tailored properties for specific requirements.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Muco/química , Caramujos/química , Animais , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Análise Espectral , Vapor , Termogravimetria
15.
Pharmaceutics ; 11(10)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615087

RESUMO

Calcium carbonate is an abundant mineral with several advantages to be a successful carrier to improve oral bioavailability of poorly water-soluble drugs, such as praziquantel. Praziquantel is an antiparasitic drug classified in group II of the Biopharmaceutical Classification System hence characterized by high-permeability and low-solubility. Therefore, the dissolution rate is the limiting factor for the gastrointestinal absorption that contributes to the low bioavailability. Consequently, the therapeutic dose of the praziquantel must be high and big tablets and capsules are required, which are difficult to swallow, especially for pediatric and elderly patients. Mixtures of praziquantel and calcium carbonate using solid-solid physical mixtures and solid dispersions were prepared and characterized using several techniques (X-ray diffraction differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, laser diffraction, Fourier transform infrared and Raman spectroscopies). Solubility of these formulations evidenced that the solubility of praziquantel-calcium carbonate interaction product increased in physiological media. In vitro dissolution tests showed that the interaction product increased the dissolution rate of the drug in acidic medium. Theoretical models were studied to understand this experimental behavior. Cytotoxicity and cell cycle studies were performed, showing that praziquantel-calcium carbonate physical mixture and interaction product were biocompatible with the HTC116 cells, because it did not produce a decrease in cell viability or alterations in the cell cycle.

16.
Eur J Pharm Sci ; 140: 105084, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626966

RESUMO

A rotated Doehlert matrix was utilized to explore the experimental design space around the milling parameters of Praziquantel (PZQ) polymorph B formation in terms of frequency and milling time. Three experimental responses were evaluated on the resulting ground samples: two quantitative responses, i.e. median particle size by Laser Light scattering (LLS) and drug recovery by HPLC, and one qualitative dependent variable, i.e. the obtained PZQ crystalline form, characterized through X-Ray Powder Diffraction (XRPD) and confirmed by Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). Temperature inside the jars was kept under constant control during the milling process by using temperature sensor equipped jars (thermojars), thus allowing evaluation of the obtained solid states at each experimental point, considering the specific temperature of the process. This explorative analysis led to the finding of a novel PZQ polymorph, named "Form C", produced without degradation, then fully characterized, including by means of Synchrotron XRPD, Polarimetric, FT-IR, SS-NMR, ESEM and saturation solubility. Crystal structure was solved from XRPD data and its geometry was optimized by DFT calculations (CASTEP). Finally, Form C and Form A activity against adult schistosoma mansoni were compared through in vitro testing, and Form C's physical stability checked. The new polymorph, crystallizing in space group I2/c, physically stable for approximately 2 months, showed a m.p. of 106.84 °C and displayed excellent biopharmaceutical properties (water solubility of 382.69±9.26 mg/l), while preserving excellent activity levels against adult schistosoma mansoni.


Assuntos
Praziquantel/química , Praziquantel/farmacologia , Difração de Raios X/métodos , Animais , Química Farmacêutica/métodos , Simulação por Computador , Cristalização/métodos , Teoria da Densidade Funcional , Feminino , Camundongos , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Pós/química , Schistosoma mansoni/efeitos dos fármacos , Software , Solubilidade , Temperatura
17.
Molecules ; 24(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557815

RESUMO

The low and variable oral bioavailability of poorly water soluble drugs remains a major concern for the pharmaceutical industry. Spray congealing is an emerging technology for the production of solid dispersion to enhance the bioavailability of poorly soluble drugs by using low-melting hydrophilic excipients. The main advantages are the absence of solvents and the possibility to obtain spherical free-flowing microparticles (MPs) by a relatively inexpensive, simple, and one-step process. This review aims to fully describe the composition, structure, physico-chemical properties, and characterization techniques of spray congealed-formulations. Moreover, the influence of these properties on the MPs performance in terms of solubility and dissolution enhancement are examined. Following, an overview of the different spray congealed systems developed to increase the oral drug bioavailability is provided, with a focus on the mechanisms underpinning the bioavailability enhancement. Finally, this work gives specific insights on the main factors to be considered for the rational formulation, manufacturing, and characterization of spray congealed solid dispersions.


Assuntos
Disponibilidade Biológica , Composição de Medicamentos/métodos , Administração Oral , Química Farmacêutica/métodos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Polietilenoglicóis/química , Solubilidade , Solventes
18.
Pharmaceutics ; 11(8)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357663

RESUMO

The present study aimed to develop a novel formulation containing glutathione (GSH) as an oral antioxidant therapy for the treatment of oxidative stress-related intestinal diseases. To this purpose, solid lipid microparticles (SLMs) with Dynasan 114 and a mixture of Dynasan 114 and Dynasan 118 were produced by spray congealing technology. The obtained SLMs had main particle sizes ranging from 250 to 355 µm, suitable for oral administration. GSH was efficiently loaded into the SLMs at 5% or 20% w/w and the encapsulation process did not modify its chemico-physical properties, as demonstrated by FT-IR, DSC and HSM analysis. Moreover, in vitro release studies using biorelevant media showed that Dynasan 114-based SLMs could efficiently release GSH in various intestinal fluids, while 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay demonstrated the good radical scavenging activity of this formulation. Dynasan 114-based SLMs exhibited an excellent biocompatibility on intestinal HT-29 cells at concentrations up to 2000 µg/mL. SLMs containing GSH alone or together with another antioxidant agent (catalase) were effective in reducing intracellular reactive oxygen species (ROS) levels. Overall, this study indicated that spray congealed SLMs are a promising oral drug delivery system for the encapsulation of one or more biological antioxidant agents for local intestinal treatment.

19.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30870971

RESUMO

Praziquantel (PZQ) is the first line drug for the treatment of schistosome infections and is included in the WHO Model List of Essential Medicines for Children. In this study, the association of mechanochemical activation (MA) and the spray congealing (SC) technology was evaluated for developing a child-friendly PZQ dosage form, with better product handling and biopharmaceutical properties, compared to MA materials. A 1:1 by wt PZQ-Povidone coground-was prepared in a vibrational mill under cryogenic conditions, for favoring amorphization. PZQ was neat ground to obtain its polymorphic form (Form B), which has an improved solubility and bioactivity. Then, activated PZQ powders were loaded into microparticles (MPs) by the SC technology, using the self-emulsifying agent Gelucire® 50/13 as a carrier. Both, the activated powders and the corresponding loaded MPs were characterized for morphology, wettability, solubility, dissolution behavior, drug content, and drug solid state (Hot Stage Microscopy (HSM), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction Studies (PXRD), and FT-IR). Samples were also in vitro tested for a comparison with PZQ against Schistosoma mansoni newly transformed schistosomula (NTS) and adults. MPs containing both MA systems showed a further increase of biopharmaceutical properties, compared to the milled powders, while maintaining PZQ bioactivity. MPs containing PZQ Form B represented the most promising product for designing a new PZQ formulation.


Assuntos
Praziquantel/química , Praziquantel/uso terapêutico , Esquistossomose/tratamento farmacológico , Animais , Anti-Helmínticos/química , Anti-Helmínticos/uso terapêutico , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Criança , Composição de Medicamentos/métodos , Humanos , Povidona/química , Povidona/uso terapêutico , Pós/química , Pós/uso terapêutico , Schistosoma mansoni/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X/métodos
20.
Food Res Int ; 119: 941-950, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30884734

RESUMO

The objective of this study was to incorporate wild garlic (A. ursinum) extract into microparticles (MPs) in order to protect its valuable active compounds and improve its oral bioavailability. For this purpose, spray congealing technology was applied and Gelucire 50/13 (Stearoyl polyoxyl-32 glycerides) was selected as MPs carrier. MPs were characterized in terms of yield, encapsulation efficiency and particle size. Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FT-IR) analysis of MPs showed the absence of chemical interactions between carrier and extract and suggested that spray congealing process did not modify nor degrade the encapsulated extract. The encapsulation into MPs led to an improvement of the extract dissolution performance as well as an enhancement in solubility of >18 fold compared to the pure extract. Additionally, MPs were stable over three months showing only a minor decrease in the content of active compounds (allicin and S-methyl methanethiosulfonate) and maintaining a good antimicrobial activity. Therefore, obtained results suggested that the encapsulation of A. ursinum extract in MPs by spray congealing is a promising approach to improve the biopharmaceutical properties of the extract, without affecting its antibacterial activity.


Assuntos
Portadores de Fármacos/química , Alho/química , Extratos Vegetais/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Composição de Medicamentos , Gorduras , Microesferas , Óleos , Tamanho da Partícula , Extratos Vegetais/farmacologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...